#### Regional Modeling – WRF/Chem

Georg Grell, Steven Peckham, Stu McKeen, Gregory Frost and others

#### Regional Modeling – WRF/Chem

- Objectives
- What models
- Some early results (verification, intercomparison, trajectories, cloud forecasts, etc...)

### Objectives

- Improve next generation air quality forecast model
- Assist in field operations

# Three different versions of WRF/Chem ("online", meteorology and chemistry integrated together)

- WRFV1/chem (27km dx)
  - Has been running for close to two years with no or little change (96 emissions inventory), evaluated retro actively with data from NEAQS2002
- WRFV2/chem (12km dx)
  - Improved anthropogenic emissions input (99 inventory)
  - Different Soil/veg/snow scheme and coupling to PBL
  - Different convective parameterization
  - Meteorological analysis based on 3dvar RUC analysis - includes sophisticated cloud analysis

### Three different versions of WRF/Chem

- WRFV2.2/chem (27km dx)
  - In addition to the previous, biogenic emissions have been changed and are now based on Beis3.1.1
  - Consistency between land use data and biogenic/anthropogenic emissions has been improved

#### What is avilable on WEB/FxNET

After some initial problems with size of data sets and different model versions

- WEB (O<sub>3</sub>, PM, met stuff):
  - WRFV1 (27km)
  - WRFV2 (12km)
  - All versions on ETL site
- FxNET
  - 72-h WRFV2.2 run (27km)
  - 36-h WRFV2 run (12km)

# How well do the models predict the local wind fields?



Observations

**27km** 

WRF1

**Observations** 

**12km** 

WRF2



### Trajectories: where does what plume go

Morning plume, trajectory release at Evening plume, trajectory release at 12z

00z





Forward trajectories

# Trajectory: How does resolution influence results?

### WRFV2 – 12KM, 12z release



## Backward trajectories: where did the air come from



Model Info: Y2.0

Mel-Yam-Ja NCEP mixed 12 km, 84 levels, 40 sec

level 1 Init: 0000 UTC Fri 23 Jul 04
Fcst: 0.00 Valid: 0000 UTC Fri 23 Jul 04 (1800 MDT Thu 22 Jul 04)
Trajectories from hour 48.000 to 72.000

| Time (h) | CO (PPM) | Prs (mb) |
|----------|----------|----------|
| 48.000   | 0.869    | 1020.045 |
| 51.000   | 0.487    | 1019.215 |
| 54.000   | 0.344    | 1018.626 |
| 57.000   | 0.239    | 1018.429 |
| 60.000   | 0.223    | 1014.085 |
| 63.000   | 0.198    | 1011.223 |
| 66.000   | 0.278    | 985.781  |
| 69.000   | 0.312    | 965.949  |
| 72.000   | 0.299    | 973.049  |



Model info: V2.0.2 Mel-Yam-Ja NCEP mixed 27 km, 34 levels, 90 sec

## Support from RUC and WRF for cloud forecasts





Cloud base height (ceiling) (kft above surface)
6-hr fest valid 23-Jul-04 18:00Z

## Support from RUC and WRF for cloud forecasts



Cloud base height (ceiling) (kft above surface)
6-hr fcst valid 16-Jul-04 16:00Z

Effect of Convection on pollutant transport



### More convection and warm frontal lifting



#### Can it work?

#### ETL lidar and 12 July, 21Z WRF-CHEM



### Isoprene prediction along P3 Flight path, NYC-1, 17z

